## **Electromagnetic Systems Simulation (ESS)**

Kwok Ko (Representing the ESS team)

**Advanced Computations Department Stanford Linear Accelerator Center** 

SciDAC Project Review – 1/15-1/16, 2003

Berkeley, CA

\* Work supported by U.S. DOE ASCR & HENP Divisions under contract DE-AC0376SF00515





#### SciDAC ESS Focuses on:

- Parallel Electromagnetic Code Development
- Accelerator Modeling & Simulation
- Comp. Sci. & Appl. Math. Collaborations (E. Ng)
- Promoting Code Use (& Student Research)
- Summary/Future Plans





#### **ESS Overview**







#### **Contributors/Collaborators**

#### (SciDAC/HENP - 715/1800 \$K)

| Accelerator Modeling        | Computational Mathematics | Computing Technologies  |
|-----------------------------|---------------------------|-------------------------|
| L. Ge, V. Ivanov, A. Kabel, | Y. Liu, I. Malik, W. Mi,  | N. Folwell, A. Guetz,   |
| K. Ko, Z. Li, C. Ng,        | J. Scoville, K. Shah,     | R. Lee, M. Wolf,        |
| L. Stingelin (PSI)          | Y. Sun (Stanford)         | G. Schussman (UCD),     |
| -                           |                           | M. Weiner (Harvey Mudd) |

#### SAPP- Stanford, LBNL, UCD; ISICs - TSTT, TOPS

(SciDAC/MICS ~ 400/655 \$K)

| · · · · · · · · · · · · · · · · · · ·  | •                                 |                                                |
|----------------------------------------|-----------------------------------|------------------------------------------------|
| LBNL (SCG)                             | Stanford (SCCM)                   | <u>Sandia</u>                                  |
| E. Ng, P. Husbands,<br>S. Li, A. Pinar | G. Golub, O. Livne,<br>Z. Su.     | P. Knupp, T. Tautges,<br>L. Freitag, K. Devine |
| UCD (VGRG)                             | LLNL (CASC)                       | RPI (SCOREC)                                   |
| K. Ma, G. Schussman                    | D. Brown, K. Chand,<br>B. Henshaw | M. Shephard, Y. Luo                            |





### Parallel Electromagnetic Code Development

- Need for accurate cavity design tools
- Unstructured grid + parallel processing
- Codes: Omega3P, Tau3P, Ptrack3D, S3P, Phi3P





#### **Challenges in EM Modeling of Accelerators**

- Accurate geometry is important due to tight tolerance
  - needs unstructured grid to conform to curved surfaces
- **▶** Large, complex electromagnetic structures
  - large matrices after discretization (100's of millions of DOF), needs parallel computing
- > Small beam size ~ delta function excitation in time & space
  - Time domain needs to resolve beam size leading to huge number of grid points, long run time & numerical stability issues
  - > <u>Frequency domain</u> wide, dense spectrum to solve for thousands of modes to high accuracy





### **Stanford e+e- Linear Collider (SLC)**

In the SLC, e+e- beams are accelerated by traveling waves in disk-loaded waveguide (DLWG) structures along the linac





1/20,000,000,000 second later (notice how far the bunches have moved)











#### Next Linear Collider (NLC) – Wakefield Suppression







Distance Behind Bunch (m)



### The NLC Accelerating Structure

#### **206-Cell Round Damped Detuned Structure RDDS**

Cell optimized to increase shunt impedance (~14%) & minimize surface gradients



Cell to cell variation of order microns to suppress short range wakes by detuning



Manifold damping to suppress long range wakes



- Needs accelerating frequency calculated to 0.01% accuracy to maintain structure efficiency
- Optimized design could save \$100 million in machine cost





### **Motivation for New EM Capability**

Modeling RDDS Cell with standard community code MAFIA using Structured Grid on Desktops demonstrates the need for MORE ACCURATE EM codes















#### Parallel EM Code Development

Started with the NLC structure research, expanded under the DOE Grand Challenge, and is now fully supported by SciDAC with the emphasis on

>>> Modeling <u>LARGE</u>, <u>COMPLEX</u> structures to high accuracy using:

- Unstructured Grids to conform to curved surfaces, and be able to increase resolution in regions of large field variation,
- Parallel Processing for big memory (mesh points) increase and speedup in simulation time.





# **Eigensolver Development for Structure Design**

Round Detuned Cell



RF parameters *Omega2* 

**Round Detuned Structure** (RDS - 206 cells)



**Transverse Wakefields** 

Omega2P

#### ----> DOE Grand Challenge

Round Damped Detuned Cell



RF parameters *Omega3* 

#### ----> DOE SciDAC Project

 Round Damped Detuned Structure (RDDS - 206 cells)



Omega3P

**Transverse Wakefields** 

Omega3Pc





# Parallel Frequency-Domain Solver – Omega3P

Calculates normal modes in lossless RF cavities using linear/quadratic finite elements on tetrahedral meshes.







#### Parallel Time-Domain Solver – Tau3P

Follows evolution of E and H fields on dual meshes (hexahedral, tetrahedral and pentahedral elements) using leap-frog scheme in time (DSI scheme)

$$\Box E \bullet ds = \Box \Box \Box \frac{\partial B}{\partial t} \bullet dA$$

$$DH \cdot ds^* = \prod_{\partial I} \partial D \cdot dA^* + \prod_{i} j \cdot dA^*$$











### Particle Tracking Module – Ptrack3D

Calculate particle trajectories using E & B fields from Omega3P (for standing wave cavities) or from Tau3P (for traveling wave structures) including surface physics (injection, thermal emission, field emission, secondaries..)

$$\frac{d\vec{p}}{dt} = e(\vec{E} + \frac{1}{c} \left[ \vec{v} \, \Box \vec{B} \, \right], \vec{p} = m \, \Box \vec{v}, \Box = \frac{1}{\sqrt{1 \, \Box \, v^2 \, / \, c^2}}$$







### Ptrack3D – Surface Physics

Particle Injection

$$I(t) = \frac{I_{\text{max}}}{1 + \left[ \frac{v_0}{a} \right]^t \left[ \frac{D_0}{D} \right] iD_t}$$

Thermal Emission (Child – Langmuir)

$$J(r,t) = \frac{4}{9} \int_0^\infty \sqrt{\frac{2QE^2}{Md}}$$

Field Emission (Fowler - Nordheim)

$$J(r,t) = 1.54 \, \Box 10^{106 + \frac{4.52}{\sqrt{\Box}}} \, \underbrace{(\Box E)^2}_{\Box} \, e^{\frac{1.53 \, \Box 10^9 \, \Box^{1.5}}{\Box E}}$$





## Ptrack3D - Secondary Emission Model

- $\square = I_{\text{secondary}}/I_{\text{primary}} = \square + \square + r;$
- □ true secondary emission (0-50 eV). □<sub>m</sub> □ 2-4.5 eV;
   □□□ 12-15 eV;
- □ non elastic reflection (50 eV-□<sub>pri</sub>)
- r elastic reflection; r = 0.05-0.5 for metals.









#### **New Parallel Solvers**

**S3P** – Frequency-domain solver based on **Omega3P** to calculate the Scattering Matrix S of open structures

$$\int_{\Omega} \frac{1}{\mu_{r}} (\nabla \times \vec{E})^{*} \cdot (\nabla \times \vec{h}) d\nu - \frac{\omega^{2}}{c^{2}} \int_{\Omega} \vec{E}^{*} \cdot \vec{h} d\nu$$
$$= -i\omega \mu_{0} \int_{S} (n \times \vec{H}_{excit})^{*} \cdot \vec{h} ds$$



**Phi3P** – Statics solver with field-based hybrid finite element (B on face, H on edge) for higher accuracy in fields & exact boundary condition description

Min 
$$1/2 \parallel \underline{B} - \underline{H} \parallel^2$$
 s.t. div  $\underline{B} = 0$ 

$$\operatorname{curl} \mathbf{H} = \mathbf{J}$$

$$\underline{B} \cdot \underline{n} = f_B$$

$$\underline{H} \times \underline{n} = f_H$$





#### **Parallel Code Structure**

- Written in C++ and use MPI for communication
- > Share geometry data for mesh distribution & matrix assembly
- Reuse existing parallel libraries ParMETIS, Aztec, ...







### **Accelerator Modeling & Simulation**

- High resolution cavity design w/ Omega3P (Accurate frequency & wall loss determination)
- Numerical design & analysis w/ Tau3P
- System scale simulation w/ Omega3P & Tau3P
- Modeling dark current w/ Ptrack3D





### **NLC Structure Design Requirements**



- > RDDS Cell : Design to 0.01% accuracy in accelerating frequency,
- > RDDS Section : Model damping/detuning of dipole wakefields.





# Modeling RDDS Cell Design (Omega3P)







# **APT Coupled Cavity Linac (Omega3P)**



#### **Omega3P Model**



| (MHz)      | Frequency shift | Stop band |  |
|------------|-----------------|-----------|--|
| Measured   | 17.56           | 0.46      |  |
| <b>□3P</b> | 17.62           | 0.54      |  |

NERSC/SP2: Elem=646K, DOF=4M, #proc=256, T=1 hr

| (MHz)      | f <sub>1</sub> uc | f <sub>1</sub> c | f <sub>2</sub> <sup>c</sup> | k      | k <sub>1</sub> |
|------------|-------------------|------------------|-----------------------------|--------|----------------|
| Measured   | 1431.35           | 1413.79          | 1409.41                     | 0.0376 | -0.00556       |
| <b>□3P</b> | 1432.31           | 1413.73          | 1409.50                     | 0.0382 | -0.00523       |

1432.35 (2D)





# **SNS RFQ Cavity (Omega3P)**

CNC RFQ cavity







#### **Promote Code use**



#### **US Particle Accelerator School (Stony Brook 2000, Yale 2002)**

#### Computer Modeling:

- (1) Electromagnetic Modeling in Accelerator Design & Analysis
- (2) EM Codes \_ Omega2P, Omega3P, RF3P, MAFIA, POISSON
- (3) 2D Design \_ SW Cavity & TW Structures
- (4) 3D Design External Q (SW) & Matching (TW)
- (5) Vacuum Chamber, Beamline Components \_ Performance & Failure Modes
- (6) Computing Wakefields & Impedances
- (7) Modeling Magnets & Eddy Currents





# **Cyclotron COMET (Omega3P)**

First ever detailed analysis of an entire cyclotron structure - L. Stingelin, PSI



## LANL Spoke Resonator (Omega3P)

#### Sensitivity analysis – J. DeFord (STAR, Inc.), F. Krawcyk (LANL)













# Trispal CCL Cavity Design (Omega3P)

#### **New Design with 4 Petal Coupling – P. Balleyguier (CEA)**



#### Frequency in MHz

| Mode   | Measured | Omega3P  | Diff_ |
|--------|----------|----------|-------|
| Single | 1080.841 | 1082.301 | 0.14% |
| Pi     | 1064.415 | 1066.106 | 0.16% |
| Zero   | 1072.412 | 1074.102 | 0.16% |

#### Cavity openings perturb wall current leading to:

- Increased wall loss that degrades shunt impedance
- Local RF heating that requires proper cooling





### **Accurate Wall Loss Determination (Omega3P)**



| Mode   | Meas. | dQ/Q   | Omega3P | dQ/Q_  | <u>MAFIA</u> | _dQ/Q_ |
|--------|-------|--------|---------|--------|--------------|--------|
| Single | 12880 |        | 13509   |        | 12236        |        |
| Pi     | 11340 | -22.5% | 12111   | -19.6% | 11924        | - 5.0% |
| Zero   | 12938 | 0.9%   | 13738   | 3.4%   | 12922        | 11.5%  |

Omega3P enables new cavities to be designed with confidence





### **Local RF Heating (Omega3P)**







### Time Domain Design & Analysis (Tau3P)

#### **Matching NLC Input Coupler w/ Inline Taper**





# Output Coupler loading on HOM modes at the RDDS output end







### Wakefield Calculation (Tau3P)

- Response of a 23-cell X-Band Standing Wave Structure w/ Input Coupler & Tapered Cells to a transit beam in Tau3P.
- Direct wakefield simulation of exact structure to verify approximate results from circuit model.







### **Beam Excited Dipole Mode Spectrum**

#### **Field inside Structure**

#### **Exit Field at Coupler Port**







### **Heating in PEP-II Interaction Region**





# FULL-SCALE OMEGA3P MODEL FROM CROTCH TO CROTCH

Beam heating in the beamline complex near the IR limited the PEP-II from operating at high currents. Omega3P analysis helped in redesigning the IR for the upgrade.





### **Trapped Modes near the Masks (Omega3P)**



### **Trapped Mode Power Loss**



Frequency = 4.551 GHz Power loss = 120 W





#### Power Distribution in PEP-II IR

- Sum power contributions from 330 localized modes in 2-6 GHz range (calculated along actual beam paths)
- Calculated power distribution agrees with measurement
- High loss mode identified near observed problem area







# RDDS 6-cell Stack (Omega3P)

# Omega3P model of a quadrant of the RDDS

#### 1st Two Dipole Bands & Manifold Modes



NERSC's IBM SP2: Elements = 275K, DOF = 1.7Million, Number of processors = 48, CPU Time = 1 hr





# RDDS 47-cell Stack (Omega3P)

1st ever Field Calculation of a Localized Dipole Mode in the NLC RDDS section with <u>actual</u> structure dimensions and showing realistic fields in the cells and the manifold



E<sub>v</sub> in cell and manifold

Manifold field



E<sub>z</sub> along z





# H90VG5 83-cell Structure (Omega3P)



#### **MODES IN 1st DIPOLE BAND**



**Mode in Ouput End** 







# Full Scale modeling of 30-cell Structure

- Distributed model on a mesh of half million hexahedral elements
- Study RF damage at high power X-Band operation using Tau3P & Ptrack3D







# **Determining Peak Fields (Tau3P)**

- When and where Peak Fields occur during the pulse?
- Transient fields 20% higher than steady-state value due to dispersive effects









# Field Evolution in 30-cell Structure (Tau3P)









# Particle Tracking in Structures (Ptrack3d)





# **Benchmarking Ptrack3D**

 High power test on a 90 degree square bend provides measured data for benchmarking the secondary emission model in Ptrack3D on a simple geometry







# Comp. Sci. & Appl. Math. Collaboration

- Large Scale Electromagnetic Simulation
- SAPP Supported Ongoing Activities
- Ongoing/New Collaborations with the ISICs





### **CS/AM** Issues with Parallel EM Simulation







# **CS/AM Activities – SAPP Supported**

#### "Details covered in E. Ng's talk on CS/AM"

- □ LBNL (E. Ng, P. Husbands, S. Li) Eigensolver, Linear Solvers
- □ Stanford (G. Golub, O. Livne, Y. Sun, W. Mi) Eigensolver, Static Solver, Multigrid
- □ SNL/SLAC (P. Knupp, N. Folwell) Mesh Quality Metrics
- □ UCD (K. Ma, G. Schussman) Visualization, Multi-resolution Technique





#### CS/AM Activities – Collaboration w/ ISICs

#### "Details covered in E. Ng's talk on CS/AM"

- TSTT (SNL: T. Tautges, L. Freitag; LLNL: K. Chand, B. Henshaw, D. Brown)
   CAD Model/Meshing
- ❖ TSTT (RPI: M. Shephard, Y. Luo) Adaptive Refinement
- \* TOPS (LBNL: A. Pinar, Sandia: K. Devine) Parallel Performance





# **Summary**

- SciDAC coupled with institutional and programmatic leverage, supports a NEW scientific enterprise that benefits not only programs in HENP but those across the Office of Science,
- ESS developed a powerful NEW simulation capability that fundamentally changed the way business is done in Accelerator Design & Analysis and already has significant impact on both existing and planned facilities,
- SciDAC's multi-disciplinary team approach and its CS & AM resources foster collaborations that strengthen the computing and computational aspects of the ESS tools, thereby increasing the range and the speed of Scientific Discovery through Advanced Simulation.





# ESS Goals for 2<sup>nd</sup> Half of Project & Beyond

#### **Develop:**

- Complex eigensolver
- Implicit time-domain FE solver
- PIC & advanced wakefield module

#### to:

- Analyze wakefields in complete NLC structure
- Study RF breakdown & dark current
- Simulate an entire NLC klystron
- Model the RIA RFQ cavity





#### **End-to-end NLC Structure Simulation**

(J. Wang, C. Adolphsen – SLAC)

- NLC X-band structure showing damage in the structure cells after high power test
- Theoretical understanding of underlying processes lacking so realistic simulation is needed









# **End-to-end NLC Klystron Simulation**

# Field and particle data estimated to be TB size PPM Focused Klystron









# **End-to-end RIA Hybrid RFQ Modeling**

(J. Nolan, P. Ostroumov – ANL)





